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11 Abstract

12 Crosshole ground penetrating radar (GPR) methods are increasingly used in time-lapse studies of 

13 flow in the uppermost near subsurface with important implications for our understanding of e.g., 

14 water infiltration in the unsaturated zone, and fluid flow in the saturated zone. A particular 

15 challenge in such time-lapse crosshole studies is the trade-off between collecting sufficient data to 

16 be able to resolve how a tracer moves, and, minimizing the data acquisition time such that the 

17 data approximates a static state. We test how dense recording geometries are needed for 

18 resolving a gas bubble injected in a highly heterogeneous chalk reservoir analogue using a full-

19 waveform inversion (FWI) approach for modelling the crosshole GPR data. We show that even 

20 relatively sparse geometries provide sufficient resolution of the permittivity contrast caused by 

21 the gas bubble, provided that the detailed background permittivity structure is known from prior 

22 (before gas injection) FWI analysis of densely recorded high-resolution data. The conductivity 

23 contrast caused by the gas is more challenging to recover and the resolution suffers to a higher 

24 degree when reducing the survey geometry or at higher noise levels. As long as the permittivity 

25 change during the time-lapse experiment is the main target, a significant reduction in acquisition 

26 time is therefore possible as compared to the time needed to record the background permittivity 

27 structure. This reduced acquisition time has important practical implications for time-lapse 
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28 experiments under realistic conditions. Our results are based on synthetic analysis based on a 

29 realistic subsurface scenario closely linked to characterization of heterogeneous chalk reservoirs. 

30 However, our findings also have important implications for planning of future time-lapse studies in 

31 other settings.

32 1. Introduction 

33 Time-lapse experiments using crosshole ground-penetrating radar (GPR) tomography are efficient 

34 in characterizing changes in water saturation in the near subsurface (see update paper by 

35 Klotzsche et al., 2018). Knowledge obtained from time-lapse experiments is important, for 

36 instance when characterizing recharging of aquifers, flow in reservoir rocks, as well as 

37 contaminant transport in the subsurface (e.g., Hubbard et al., 1997; Binley et al., 2001; Day-Lewis 

38 et al., 2003; Looms et al., 2008; Haarder et al., 2012; Lassen et al., 2015). 

39 A tracer fluid or gas is typically injected into the formation and its flow across the studied interval 

40 is monitored by collecting GPR data at selected time intervals. The radar wave velocity is mainly 

41 controlled by the relative permittivity of the subsurface, and is highly sensitive to the moisture 

42 content of the sampled volume because of the substantial difference between the relative 

43 permittivity εr = 1 of air (gas) and water  εr ≈ 80 (Davis and Annan, 1989). Further, variations in 

44 electrical conductivity caused by the applied tracer may result in radar wave amplitude changes 

45 that are strong enough to affect the results obtained from application of FWI (Meles et al., 2010; 

46 Klotzsche et al., 2019). Interpretation of time-lapse data has largely been carried out applying ray-

47 based inversion methods (e.g., Binley et al., 2001; Looms et al., 2008). Here, differences in the 

48 resulting subsurface tomograms obtained for different times after fluid/gas injection are 

49 interpreted to show the tracer movement and extension. 

50 The applied tracer is typically designed to create a strong contrast to the background media. 

51 Strong anomalies of small size are difficult to handle for ray-based inversion methods because of 

52 the inherent limitations linked to such approaches. The resolution of the subsurface models is 

53 improved by using full-waveform inversion (FWI). Several case studies have applied the FWI 

54 algorithms developed by Ernst et al. (2007a) and Meles et al. (2010), and demonstrated that FWI 

55 resolves small-scale structures and higher resolution images than ray-based inversion methods 

56 (e.g., Ernst et al. 2007b; Klotzsche et al., 2013; Gueting et al., 2017 and Keskinen et al., 2017). 

57 Furthermore, Klotzsche et al. (2013) were able to correlate a zone of higher permittivity with 
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58 zones of preferential flow within a gravel aquifer indicating the possibility to detect preferential 

59 flow paths of gas and water in different environments. 

60 A key aspect in time-lapse GPR experiments is the selected data acquisition strategy. When 

61 collecting data for crosshole tomography, the subsurface is typically sampled using the so-called 

62 ‘multiple offset gather’ (MOG) acquisition technique presented e.g., in Binley et al. (2001). With 

63 this measurement geometry, a transmitter antenna is kept in fixed positions in one borehole while 

64 a receiver antenna is lowered in discrete steps in the other borehole illuminating the section 

65 between the boreholes at different angles. Such an acquisition strategy allows for resolving the 

66 subsurface variations vertically and to some extent laterally. If mainly vertical changes (horizontal 

67 layering) in the studied section are relevant, the subsurface can also be sampled efficiently using 

68 so-called zero-offset profiling (ZOP), where transmitter and receiver antennae are lowered in 

69 parallel down the boreholes in discrete steps (see e.g., Binley et al., 2001). In both cases the 

70 collected datasets have to be dense enough to provide reliable results for the target of the 

71 investigation. Nevertheless, time consuming data collection with many transmitter-receiver 

72 positions may be problematic due to possible significant fluid/gas movement during the 

73 acquisition time interval. For example, Lassen et al. (2015) observed that gaseous C02 migrated 

74 laterally approximately 2 m away from the injection point during only two hours. 

75 The resolution study conducted by Oberröhrmann et al. (2013) focused on optimizing transmitter 

76 and receiver spacing to obtain adequate ray coverage for reliable FWI results, while reducing 

77 computation time. They used for example the MOG data acquisition with 0.5 m transmitter 

78 spacing and 0.1 m receiver spacing, and, repeated the measurements after changing the 

79 transmitter and receiver boreholes using a semi-reciprocal setup. This approach resulted in 

80 approximately 4.5 hours of data acquisition time. Also, Keskinen et al. (2017), Ernst et al. (2007b), 

81 and Yang et al. (2013) choose a sampling strategy to ensure dense data coverage for FWI by 

82 performing either two-sided or one-sided dense measurements (higher computational costs). 

83 Coarser transmitter and receiver spacing are applied in the experiments of Ernst et al. (2007b) and 

84 Klotzsche et al. (2014). Their results suggest that sufficient ray coverage for reliable FWI results 

85 may also be obtained with a sparser dataset and hence shorter acquisition times. 

86 The tracer migration in the subsurface sets a strict time limit on crosshole GPR data collection. 

87 Therefore, we study the trade-off between the acquisition time and the resolution of the models 
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88 obtained from FWI of crosshole GPR data. Specifically, we apply different acquisition strategies for 

89 resolving models that illustrate a time-lapse experiment, where gas is injected into a strongly 

90 heterogeneous water-saturated medium to form a small, but strong/distinct anomaly to the 

91 surroundings. For this purpose, we use realistic subsurface relative permittivity  εr and electrical 

92 conductivity σ distributions obtained from the FWI crosshole GPR study by Keskinen et al. (2017) 

93 and apply FWI to investigate how each of the selected data acquisition geometries perform in 

94 resolving the location, size and magnitude of the anomaly. Thus, in contrast to earlier synthetic 

95 resolution studies, we base our investigations on a concrete case, where highly contrasting chalk 

96 deposits are investigated. Study of this chalk sequence is considered essential for improved 

97 reservoir characterization of onshore groundwater reservoirs in Denmark and offshore 

98 hydrocarbon reservoirs in the North Sea. Moreover, since the studied sequence has been mapped 

99 with high resolution crosshole GPR data using FWI analysis (Keskinen et al., 2017), we only need to 

100 resolve variations from the already established high-resolution image in our synthetic time-lapse 

101 experiments. Trade-offs between realistic acquisition times, resolution of the tracer anomaly, the 

102 effect of noise, and possible tracer movement during data acquisition are discussed. 

103

104 2. Designing the synthetic experiment 

105 2.1 Acquisition geometries

106 Former FWI studies conducted with experimental crosshole GPR data used different choices for 

107 the data acquisition geometry and the resulting data coverage. For example, the experiments by 

108 Ernst et al. (2007b) and Yang et al. (2013) used transmitter spacing from 0.4 m to 0.5 m, while the 

109 receiver spacing varied from 0.05 m to 0.5 m, respectively. They used the MOG data acquisition 

110 technique and kept the transmitter in one borehole, while the receiver was kept in the other 

111 borehole. Thus, for those experiments the dataset is one-sided. If the transmitter or the receiver 

112 spacing is large, the ray coverage may be too sparse and may lead to poor FWI results, in particular 

113 close to the model edges and boreholes. Oberrörhmann et al. (2013) compared three different 

114 acquisition geometries and their impact on the resolution of the obtained subsurface models. The 

115 investigated datasets of that study consisted of a one-sided sparse geometry with 0.5 m 

116 transmitter and 0.1 m receiver spacing, and a one-sided dense geometry with 0.1 m transmitter 

117 and receiver spacing. The third dataset investigated by Oberrörhmann et al. (2013) was a two-
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118 sided setup, which was composed of two subsets with transmitters at every 0.5 m and receivers at 

119 every 0.1 m. The first subset of the two-sided data was recorded by keeping a transmitter in the 

120 first borehole, while a receiver is kept in the other borehole. For the second subset, the 

121 transmitter and receiver locations were interchanged (semi-reciprocal). The semi-reciprocal setup 

122 was introduced by Klotzsche et al. (2010) to minimize the acquisitions time and the computational 

123 cost for the FWI. Oberrörhmann et al. (2013) conclude that the two-sided setup results in 

124 acceptable FWI results, while reducing both computing time and acquisition time by reducing the 

125 number of measurement points. While the dense one-sided dataset takes approximately 9 hours 

126 to collect, the two-sided dataset is collected in only 4.5 hours. Klotzsche et al. (2014) used 100 

127 MHz antennae systems and even sparser sampling with a transmitter spacing of 1 m and a receiver 

128 spacing of 0.25 m. As this dataset was two-sided, the ray coverage close to the boreholes was 

129 sufficient for reliable FWI results in their case.

130 We choose to investigate two-sided crosshole datasets and compare seven different survey 

131 geometries (see Fig. 1). The dense two-sided MOG acquisition geometry from Keskinen et al. 

132 (2017) is used as the reference geometry (see Fig. 1A) and is also the geometry used to achieve 

133 the background permittivity distribution. Thus, the reference recording geometry used here 

134 consists of 40 transmitter positions, one at every 0.5 m down a 15 m deep borehole. For each 

135 transmitter gather, we have 156 receiver positions, one at every 0.0625 m, resulting in a total of 

136 6240 recorded traces. For the 100 MHz PulseEKKO GPR system (Sensors & Software, ON, Canada) 

137 used by Keskinen et al. (2017), the first side (20 transmitter gathers) of such a dataset requires 

138 approximately 4.3 hours of data collection, assuming that the time delay between each trace is 3 

139 seconds, and that the additional time needed between subsequent transmitter gathers is 5 

140 minutes. Note that also the choice of time window, time sampling and stacking of the traces is 

141 affecting the acquisition time, which are assumed to be constant for this study. 

142
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143 Figure 1: Data coverage for the first half of each dataset transmitter positions are indicated with 

144 red circles and receiver positions with blue dots. Table 1 shows the data acquisition parameters 

145 for each of the survey geometry. 

146 Other, sparser, recording geometries are designed and tested. The sparse two-sided MOG survey 

147 geometries; Sparse 1-5 (Fig. 1B-F), are different subsets of the dense geometry. They are designed 

148 so that only the receiver spacing is increased (Sparse 1) or that both the transmitter and the 

149 receiver spacing are increased (Sparse 2-5). In addition, we test one ZOP strategy with 25 cm 

150 transmitter and receiver spacing (Fig. 1G). The data collection routine in the field requires at least 

151 the following steps: 

152 1. Collect starting calibration data (time-zero correction) for the first half of the entire data.

153 2. Record the first side of the entire MOG dataset or record the first ZOP data (transmitter in 

154 borehole 1, receiver in borehole 2).

155 3. Collect calibration data.

156 4. Carry out required tasks to record the second half of the dataset (e.g., move the 

157 equipment, change batteries).

158 5. Collect starting calibration data for the second half of the entire dataset. 

159 6. Record the second half of the entire MOG dataset or record the second ZOP data 

160 (transmitter in borehole 2, receiver in borehole 1).

161 7. Collect final calibration data.

162 We assume that the time needed for the starting calibration (for correcting the time zero of the 

163 data), the final calibration and the time needed for interchanging the transmitter and receiver 

164 boreholes is the same for all survey geometries. Also, both MOG and ZOP data are collected as 

165 two-sided datasets. This is done to ensure that all data analysis is conducted exactly the same 

166 manner for all of the tested survey geometries. For the ZOP survey a one-sided dataset would, in 

167 principle, provide the same information as the two-sided. Table 1 compares the acquisition times 

168 for the first half of each acquisition setup. Table 1 also shows the survey parameters for all 

169 recording geometries.

170

171



7

Dense Sparse 1 Sparse 2 Sparse 3 Sparse 4 Sparse 5 ZOP

Transmitter spacing (m) 0.5 0.5 1 1 1 2 0.25

Receiver spacing (m) 0.0625 0.5 0.25 0.5 1 0.25 0.25

Number of transmitter positions 40 40 20 20 20 10 78

Number of receiver positions 312 40 78 40 20 78 78

Number of collected traces 6240 800 780 400 200 375 78

Number of traces used in FWI 4078 521 510 260 128 253 78

Acquisition time per transmitter 

gather (mins)

7.8 1 2 1 0.5 2 -

Estimated acquisition time per the 

first half of the dataset (mins)

256 120 70 60 55 35 7

172

173 Table 1: Survey geometries shown together with the estimated data acquisition times for an 

174 individual transmitter gather (MOG and ZOP strategies) as well as for half a dataset, respectively. 

175 Number of recorded traces differs from the number of traces used in the FWI.

176

177 For ray-paths with high angles an increasing apparent-velocity can be observed, and to avoid 

178 artefacts in the tomographic inversion the field data has to be reduced (Peterson, 2001; Irving and 

179 Knight, 2005). Therefore, transmitter-receiver pairs that have an angle higher than 40 degrees 

180 above the horizontal are removed from the datasets used in FWI. Table 1 shows the number of 

181 traces used in FWI for each tested survey geometry and Figure 1 illustrates the data coverage of 

182 these recording geometries.

183

184 2.2 True Subsurface Models and Synthetic GPR Data

185 2.2.1 The background models

186 As mentioned above, Keskinen et al. (2017) applied FWI on GPR data collected in a chalk quarry to 

187 map heterogeneity of the rocks and estimate a high-resolution porosity model in the fully water-

188 saturated part of the studied section. We use the final subsurface permittivity ɛr, conductivity σ, 

189 and bulk porosity ɸ distributions from their study as reference models representing the situation 
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190 before a gas bubble is introduced into the subsurface. Moreover, for simplicity the mean 

191 groundwater conductivity of 88.1 mS/m from their measurements is chosen for this study. 

192

193 2.2.2 Influence of a gas bubble

194 Tracer experiments,  e.g., by Hubbard et al. (1997), Tomlinson et al. (2003), Cahill et al. (2013), and 

195 Lassen et al. (2015), show that a tracer substance can create strong local anomalies with gas 

196 saturation from 30% up to 65%. Therefore, in our synthetic test modelling the true subsurface 

197 models represents a setting where gas has partially replaced a small volume of pore water from 

198 the reference ɛr and σ models. The water saturation in the gas bubble is 70% and the electrical 

199 properties of the gas are assumed the same as for air. Mount and Comas (2014) compared 

200 different methods to estimate porosity in a limestone sample and concluded that complex 

201 refractive index model (CRIM) (e.g., Lesmes and Friedman, 2005) performs well in estimating bulk 

202 porosities from GPR measurements. Also, Keskinen et al. (2017) assumed that the dielectric 

203 properties of chalk do not significantly differ from those of limestone. In this study, the influence 

204 of the gas on the bulk permittivity ɛb is therefore calculated using the previously estimated bulk 

205 porosities ɸ and CRIM for partially saturated media (Lesmes and Friedman, 2005):

.𝜀𝑏 = 𝑆ɸ 𝜀𝑤 + ɸ(1 ‒ 𝑆) 𝜀𝑎 + (1 ‒ ɸ) 𝜀𝑚 (1)

206 The rock matrix is considered to be pure calcite and the permittivity values for water, air and 

207 calcite are ɛw = 80, ɛa = 1 and ɛm = 8, respectively (Davis and Annan, 1989; Lebron et al. 2004). 

208 Water saturation in fraction is indicated with . 𝑆

209 A first-order estimate of the influence of the gas bubble on the bulk conductivity σb is estimated 

210 using Archie’s law ( e.g., Lesmes and Friedman, 2005) for partially saturated media, and the 

211 groundwater conductivity (σw = 88.1 mS/m, Keskinen et al., 2017) and the previously obtained 

212 bulk porosity model ɸ are assumed to be related as follows:

,𝜎𝑏 = 𝜎𝑤ɸ𝑚𝑆𝑑 (2)

213 where m is the cementation exponent and d is the saturation index. Witthüser et al. (2000) 

214 collected chalk samples close to the study area of Keskinen et al. (2017) and estimated the 

215 cementation exponent m = 2.2 for these samples. We use the same value for this synthetic study. 
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216 The saturation index d is usually larger than the cementation factor m because the conducting 

217 paths become more tortuous with decreasing saturation (Lesmes and Friedman, 2005). For 

218 simplicity, we choose a saturation index d = 2.2 in our study, as this also gave reliable results in 

219 Keskinen et al. (2017).

220

221 2.2.3 Calculation of synthetic crosshole GPR data

222 Synthetic noise-free GPR data for each acquisition setup are obtained using the 2D forward 

223 modeling algorithm by Meles et al. (2010), which is based on finite-difference solutions of 

224 Maxwell’s equations in the time-domain. The final FWI results of the subsurface ɛr, σ, and the 

225 effective source wavelet of Keskinen et al. (2017) are used to derive the synthetic data. The source 

226 wavelet has a center frequency of 27 MHz.  The resulting GPR datasets (measured data) have a 

227 frequency spectrum comparable to experimental crosshole GPR data collected from water-

228 saturated chalk as the center frequency of the recorded signals varies between less than 30 to ~70 

229 MHz, depending on the depth of the studied interval (see Keskinen et al. (2017) for more 

230 details).The gas bubble was added at a depth of approximately 11 m. Noisy datasets are obtained 

231 by adding random noise on the modeled noise-free GPR data. We assume that the noise is 

232 Gaussian with a mean amplitude =0 and standard deviation std = 0.51×10-6 for a low noise  𝐴

233 scenario, std = 1.02×10-6 for an intermediate noise scenario, and std of 1.53×10-6 for a high noise 

234 scenario (Figure 2).  The level of noise in the high-noise scenario is determined by choosing the 

235 remaining root-mean-square-error rms=1.53×10-6 from the final FWI results in Keskinen et al. 

236 (2017). The noise estimated this way is rather high compared to the observations from the 

237 experimental data in their study, see Figure 2C. Therefore, it is reasonable to test the other two 

238 scenarios as well. The intermediate and low noise levels are 1/3 and 2/3 of this value, respectively 

239 (Figures 2A and 2B).

240
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241

242 Figure 2: (A) Low, (B) intermediate, and (C) high noise added on the synthetic data (red). The noise 

243 is random Gaussian noise with a standard deviation std of, 0.51∙10-6, 1.02∙10-6, and 1.53∙10-6, 

244 respectively. The black trace represents the noise free trace.

245

246 2.3 Full-waveform inversion of crosshole GPR 

247 FWI method is based on a conjugate-gradient type inversion scheme that simultaneously retrieves 

248 the subsurface ɛ and σ distributions (more detail in Meles et al., 2010). One of the main challenges 

249 in applying this method on field data is finding suitable starting models for ɛ and σ, as well as 

250 finding a representative effective source wavelet to describe the interaction between the 

251 formation and the emitted electromagnetic wave (e.g., Klotzsche et al., 2019; Keskinen et al., 

252 2017). In this synthetic study, we use the final effective source wavelet estimated by Keskinen et 

253 al. (2017) and assume that source wavelet is not changing during the injection. Therefore, 

254 differences in the FWI results arise from the survey geometries only and are not influenced by the 

255 source wavelet. The gas bubble changes the electrical properties of the subsurface in a small area, 

256 while most of the model remains the same. It is therefore reasonable to assume that the source 

257 wavelet estimated using a fully water-saturated model and a source wavelet estimated from the 

258 models with a gas bubble do not significantly differ from each other. Note that in realistic tracer 

259 experiments an effect on the effective source wavelet could be expected if changes in the 

260 borehole fillings are present (Klotzsche et al., 2019).



11

261 The FWI method of Meles et al. (2010) is solving the misfit function  between modeled 𝐶(ɛ,𝜎) 𝑬𝑠

262  and measured electrical :(ɛ,𝜎) 𝑬 𝑠
𝑜𝑏𝑠(ɛ,𝜎)

 .𝐶(ɛ,𝜎) =
1
2∑

𝑠
∑

𝑑
∑

𝜏[𝑬𝑠(ɛ,𝜎) ‒ 𝑬 𝑠
𝑜𝑏𝑠(ɛ,𝜎)] 𝑇

𝑑,𝜏 ∙ 𝛿(𝒙 ‒ 𝒙𝑑,𝑡 ‒ 𝜏)[𝑬𝑠(ɛ,𝜎) ‒ 𝑬 𝑠
𝑜𝑏𝑠(ɛ,𝜎)]𝑑,𝜏

(3)

263 The sum is calculated over sources s, receivers d and observation times τ; δ is the Dirac’s delta 

264 function, t the time, x the location and xd the receiver position. Vectors are denoted with bold 

265 letters. The electrical fields are modeled by solving Maxwell’s equations with finite-difference 

266 approach in time-domain and consider the vectorial behavior of the fields. The FWI algorithm of 

267 Meles et al. (2010) finds the minimum of the misfit function  by applying a gradient based 𝐶(ɛ,𝜎)

268 iterative least-squares method. At each iteration (step k), first synthetic electrical fields  𝑬𝑠(ɛ,𝜎)

269 are calculated using the current subsurface models (ɛk and σk). Second, the subsurface model 

270 update directions  and  are estimated. Third, two step lengths Ϛɛ and Ϛσ are calculated to ∇𝐶ɛ ∇𝐶𝜎

271 determine how much the subsurface ɛk and σk models need to be updated for the next iteration 

272 (step k+1) to minimize the cost function. The next iteration (k+1) is carried out the same way as 

273 above, but with the new updated subsurface models (ɛk+1 and σk+1). The process continues until 

274 the FWI has converged, the root-mean-square-error rms between to subsequent iterations is 

275 changing less than 0.5%, and is in total reduced by minimum 50% compared to the starting 

276 models.

277 The FWI method requires suitable starting models ɛ0 and σ0 that provide synthetic data within half 

278 a wavelength of the measured data to able to perform the first iteration step (Meles et al., 2010). 

279 We used as starting models the final permittivity and conductivity models of Keskinen et al. 

280 (2017), which represent the fully water-saturated subsurface before the tracer gas is injected into 

281 the subsurface. The model area for the inversion is discretized into 12 cm by 12 cm cells (forward 

282 model 3 times finer), and we define a damping zone of 48 cm wide around the boreholes 

283 locations. In these zones, the model updates by the FWI are heavily dampened to avoid strong 

284 artefacts close to model edges. Outside the dampening zones, the FWI is allowed to freely update 

285 the subsurface models. Perturbation factors that are necessary for the step length calculations 

286 need to be define and optimized in the beginning of the FWI. These factors influence the 

287 magnitude of the allowed subsurface model updates. In this study, these perturbation factors are 

288 optimized so that the obtained results have the smallest rms while the anomaly shape and 

289 magnitude induced by the gas bubble are well-constrained. 
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290

291 The final FWI results is decided when following criteria are fulfilled: rms curve converges, the rms 

292 between modeled and measured data changes less than 0.5% between subsequent iterations, the 

293 total rms is decreased by at least 50% from the starting model, a good fit between the measured 

294 and modeled data in the entire domain, and remaining permittivity and conductivity gradients 

295 have decreased close to zero value. The rms criterion is based on the observation that the final 

296 subsurface models remain practically unchanged during the following iterations even if the data 

297 used is noise-free. Setting a stricter rms criterion, for example 0.1%, does not bring any additional 

298 information on the final results. The rms criterion is applied both on the noise-free and noisy data. 

299 Therefore, the number of iterations needed to reach the convergence criterion is different for 

300 each presented test. The number of iterations needed for convergence decreases when the level 

301 of noise increases. 

302

303 3. Results

304 3.1 Different acquisition setups

305 The true subsurface input ɛr and σ distributions including the gas bubble used for testing are 

306 shown in Figures 3A and 4A. The gas bubble permittivity in the true ɛr distribution is approximately 

307 13 units lower than in the background distribution forming a strong and small low-permittivity 

308 target in high permittivity material (Fig. 3A, 3I). In the true σ distribution, the same target appears 

309 as an anomaly having approximately 10 mS/m lower conductivity than in the surrounding material 

310 (Fig. 4A, 4I). The resolved ɛr and σ images using the different acquisition strategies are shown in 

311 Figures 3B-3H and 4B-4H, respectively. The number of traces used in the FWI for each case is 

312 indicated in Table 1. 
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313

314 Figure 3: The true subsurface ɛr model (A) and the resolved ɛr models obtained from the different 

315 acquisition geometries (B-H). True anomaly magnitude (I) is obtained by subtracting the true 

316 subsurface ɛr model from the ɛr starting model. The resolved anomaly magnitudes (J-P) are 

317 estimated by subtracting the final ɛr model from the ɛr starting model. Transmitter and receiver 

318 positions are indicted with circles and crosses, respectively.

319

320

321 Figure 4: The true subsurface σ model (A) and the resolved σ models obtained from the different 

322 acquisition geometries (B-H). True anomaly magnitude (I) is obtained by subtracting the true 



14

323 subsurface σ model from the σ starting model. The resolved anomaly magnitudes (J-P) are 

324 estimated by subtracting the final σ model from the σ starting model.

325 The resolved permittivity distributions show that all sparse setups using MOG data acquisition 

326 perform well in resolving the location and the shape of the gas bubble (Figs. 3C-3G, 3J-2O). 

327 However, Sparse Geometry 4 with 1 m transmitter and 1 m receiver spacing has some difficulties 

328 resolving the background distribution suggesting that the dataset is reduced too much (Fig. 3F). 

329 The models obtained from Sparse Geometries 1-5 have slightly higher permittivity directly above 

330 and below the gas bubble than in the model resolved using the dense reference geometry (Fig. 3B-

331 3G, 3J-3O). The dense reference setup results in a slightly more horizontally elongated bubble than 

332 the sparse geometries. The recovered maximum anomaly magnitude for each acquisition setup is 

333 presented in Table 2. All MOG surveys estimated the magnitude of the permittivity anomaly in a 

334 similar manner. In the very center of the gas bubble, the resolved anomaly magnitude is 53-60% of 

335 the true magnitude (Figs. 3I-3O). The maximum value represents one cell in the bubble area and 

336 illustrates the brightness of the bubble. 

??ɛr (-) ??σ(mS/m) ??ɛr (%) ??σ (%)

True anomaly 13.00 10.29 100 100

Dense 7.27 3.26 56 35

Sparse 1 7.25 4.3 56 42

Sparse 2 7.44 4.6 57 45

Sparse 3 7.48 4.15 58 40

Sparse 4 7.80 2.97 60 29

Sparse 5 6.91 3.22 53 31

ZOP 3.27 1.05 25 10

337

338 Table 2: Maximum values of true and resolved ɛr and σ anomaly magnitudes estimated for each 

339 acquisition setup. See section 3.1 and Figures 3 and 4 for details. 

340 The permittivity model obtained from ZOP data differs significantly from the results discussed 

341 above (Fig. 3H, 3P). The gas bubble appears as a low-permittivity layer in the correct depth 

342 interval. The magnitude of the resolved anomaly is 25% of the true anomaly, and the obtained 

343 subsurface ɛr background model is smoother than those obtained using MOG acquisition (see 

344 Table 2).
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345 Figures 4B-4G show σ models obtained using the dense MOG data and the different sparse MOG 

346 data subsets. The influence of reducing traces on the obtained σ images is clearer than for the ɛr 

347 images. For the first three sparse setups presented in Figures 4C-E and 4K-4M, the shape, location 

348 and magnitude of the gas bubble is resolved in a similar manner as when using the dense 

349 acquisition geometry (Fig. 4B, 4J). When the number of traces is reduced further, the gas bubble is 

350 slightly more difficult to outline from the background distribution (Fig. 4F-4G). Differences in the 

351 performance of the selected acquisition strategy are also seen on the magnitudes of the resolved 

352 anomalies. The dense reference setup results in a slightly smoother model than the first three 

353 sparse geometries. While the maximum recovered anomaly magnitude is 35% for the dense 

354 geometry, the Sparse Geometries 1-3 resolve 40-45% of the true magnitude (Fig. 4J-4M, Table 2). 

355 Sparse Geometries 4-5 result in a weaker anomaly than the dense reference geometry and only 

356 resolve approximately 30% of the true anomaly magnitude (Fig. 4J, 4N-3O, Table 2).  In contrast to 

357 the ɛr model obtained from ZOP data, the corresponding σ model does not show the depth of the 

358 gas bubble. Essentially no change in the subsurface conductivity is seen induced by the gas bubble 

359 (Fig. 4H, 4P).

360 Sparse Geometry 2 with 1 m transmitter spacing and 25 cm receiver spacing results in the best ɛr 

361 and σ final models (Fig. 3D, 3L, 4D, 4L). Moreover, the estimated time for acquiring this dataset is 

362 significantly shorter compared to choosing, e.g., Sparse Geometry 1 (see Table 1). The final ɛr 

363 model obtained from Sparse Geometry 3 is also relatively well-resolved and the final σ is only 

364 slightly less well-constrained as compared to the most optimal Sparse Geometry 2(Fig. 3E, 3M, 4D-

365 4E, 4L-4M). The dataset collected using the survey geometry of Sparse 3 may also be slightly faster 

366 to collect. The delay time during recording traces between subsequent receiver positions depends 

367 on the field conditions, for example the antenna cables may tangle easier or be more challenging 

368 to place in at the accurate vertical depth location if the receiver is moved in big steps rather than 

369 in small steps necessitating more than 3 seconds between subsequent traces.

370

371  3.2. Comparison of noise-free and noisy data

372 The acquisition geometry test presented in chapter 3.1 is conducted using noise-free data. In 

373 order to investigate the impact of noise on the final FWI results, we test three different scenarios. 

374 The three tests only differ in the level of random noise (see Figure 2). 
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375 The noise tests are initially carried out with the dense acquisition setup. Final ɛr models obtained 

376 from the noisy datasets (Fig. 5C-5E) show characteristics similar to the models obtained from 

377 noise-free data which is included in Fig. 5B to facilitate comparison. The depth of the gas bubble is 

378 well captured, but the shape of the bubble changes slightly when noise is introduced. In the low-

379 noise scenario the change is not easily recognized. As the noise increases, the bubble becomes 

380 more horizontally elongated than in the noise-free scenario (Fig. 5B-5E). Also, the magnitude of 

381 the resolved ɛr anomaly is affected by the noise: The amplitude of the recovered anomaly 

382 decreases with increasing noise, and the strong negative areas directly above and below the 

383 bubble become weaker as the noise level increases (Fig. 5G-5J), see Table 3. 

384

385 Figure 5: Panel A shows the true subsurface ɛr distribution and H shows the true anomaly 

386 magnitude. Final ɛr models obtained from noise-free data (B) and noisy data (C-G) are similar to 

387 one another. The gas bubble becomes slightly more horizontally elongated as the noise level 

388 increases (B-E). Also, the magnitude of the resolved bubble becomes weaker with increasing noise 

389 (I-L). Permittivity models obtained from highly noisy data are not greatly affected by the selected 

390 acquisition geometry (E-G). In all cases with a high noise level, the magnitude of the resolved 

391 anomaly is approximately 50% of the true magnitude.

392

393
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??ɛr (-) ??σ (mS/m) ??ɛr (%) ??σ (%)

True anomaly 13 10.29 100 100

Noise-free (Dense) 7.27 3.62 56 35

Low noise (Dense) 6.74 2.17 52 21

Medium noise 

(Dense)

5.55 1.72 43 17

High noise (Dense) 5.56 1.78 43 17

High noise (Sparse 

2)

5.60 1.81 43 18

High noise (Sparse 

5)

5.42 1.93 42 19

394

395 Table 3: True and resolved maximum anomalies using noisy data.

396 While the ɛr models do not change drastically from the noise-free results, σ results are significantly 

397 affected by the noise (Fig. 6). All of the noisy data scenarios show that the gas bubble is quite 

398 difficult to outline from the background ɛr model. Also the amplitude of the resolved anomaly is 

399 clearly lower than in the models obtained from noise-free data.

400

401

402
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403 Figure 6: Panels A and H show the true subsurface σ distribution and the true anomaly magnitude, 

404 respectively. The noise-free data results in a clearly better σ model than the noisy datasets (B-G). 

405 The influence of the added noise is also seen in the resolved magnitudes (I-N). 

406 Reducing data coverage does not have a notable influence on the final results. For comparison, we 

407 apply Sparse Geometries 2 and 5 on the high-noise data shown in Figure 2C. The ɛr and σ models 

408 show the same characteristics as the models resolved using the dense geometry (Figs. 5E-5G, 6E-

409 6G, Table 3). Similarly to the observations from different acquisition geometries (Figs. 3-4), the gas 

410 bubble in the ɛr model becomes laterally more elongated if the dense acquisition geometry is 

411 applied than if either Sparse Geometry 2 or 5 is chosen (Fig. 5E-5G). All tested survey geometries 

412 result in rather poor σ models. The location of the gas bubble cannot be clearly observed (Fig. 6E-

413 6G).

414

415 3.3. Increasing bubble size

416 In the last test, we increase the bubble size and use the high-noise data in FWI. The big gas bubble 

417 is almost three times as big as in the previous experiments. Gas saturation in the big bubble is 

418 again 30% and it produces a low-conductivity and low-permittivity anomaly in the subsurface (Figs. 

419 7A, 7E, 8A, 8E).

420
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421 Figure 7: ɛr models obtained from highly noisy data (B-D) using Dense and Sparse Geometry 2 and 

422 5. Corresponding resolved anomaly magnitudes are shown in F-H.

423

424 Figure 8: σ models obtained from highly noisy data (B-D) using Dense and Sparse Geometry 2 and 

425 5. Corresponding resolved anomaly magnitudes are shown in F-H.

426

427 Dense and Sparse Geometry 2 result in better subsurface models than Sparse Geometry 5 (B-D). 

428 The resolved anomaly magnitude using the dense and the Sparse Geometry 2 is almost 40% of the 

429 true anomaly magnitude (F-G) while the Sparse Geometry 5 poorly recovers the location and the 

430 magnitude of the anomaly. The resolved ɛr models show small differences in the shape of the big 

431 gas bubble (Fig. 7B-7D). In all tested survey geometries the magnitude of the anomaly is 54-58 % 

432 of the true anomaly magnitude (Fig. 7E-7H). The areas showing high permittivity directly above 

433 and below the bubble become clearer as data coverage is reduced (Fig. 7B-7D). Increasing the size 

434 of the gas bubble improves the subsurface σ models. The dense reference geometry and the 

435 Sparse Geometry 2 now result in a clearly visible bubble (Fig. 8B-8C). The location of the injected 

436 gas is well resolved and the anomaly magnitude is 38-39% of the true subsurface anomaly (Fig. 8E-

437 8G). As the data coverage is reduced further, the gas bubble again becomes difficult to outline 
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438 from the background (Figs. 8D, 8H, Table 4). Overall, the observations from increasing the bubble 

439 size are consistent with the results obtained from noise-free data (see section 3.1).

??ɛr (-) ??σ (mS/m) ??ɛr (%) ??σ (%)

True anomaly 13 11.86 100 100

Dense 7.57 4.65 58 39

Sparse 2 7.58 4.47 58 38

Sparse 5 7.02 2.94 54 25

440

441 Table 4: True and resolved anomaly magnitudes using a big gas bubble and noisy data. See section 

442 3.3 for details.

443

444 3.4. Additional tests

445 In addition to the tests presented in 3.1-3.3, we investigate how the dense and the sparse 

446 geometry 2 resolve the subsurface models if the small gas bubble with 30% gas saturation is 

447 located in a low-permittivity zone at approximately 12 m depth. The collected crosshole GPR data 

448 in this test is noise free. In this new geological setting, the anomaly caused by the gas bubble in 

449 the ɛr models is 10 units lower than the surrounding media and is therefore regarded as a 

450 moderate anomaly. In the σ model the anomaly is approximately 14 units lower than the 

451 surrounding media and causes a strong local anomaly. The obtained results are consistent with the 

452 acquisition geometry tests shown in section 3.1 and do not therefore appear to depend on the 

453 location of the bubble, and the results are therefore not included here.

454 As the resolved anomaly is more difficult to outline from the σ models than from the ɛ models, we 

455 also test if a homogeneous conductivity starting model (σ = 17 mS/m) results in more appropriate 

456 σ models than the true background σ distribution. The conductivity starting model test is carried 

457 out with the two different geological settings where the small gas bubble with 30% gas saturation 

458 is either located in a high permittivity zone or in the low permittivity zone. The measured data is 

459 again noise-free and we apply the dense reference acquisition geometry and the sparse geometry 

460 2. The homogeneous σ starting model results in slightly better σ models than the true background 

461 σ distribution, as the resolved anomaly induced by the gas bubble is easier to delineate and has 

462 stronger amplitude. However, resulting ɛr models become less optimal for both acquisition 
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463 geometries. The resolved anomaly in the ɛr model has lower amplitude and a smaller size than in 

464 the results obtained using the true background σ distribution. 

465

466 4. Discussion

467 FWI has proven to be a strong tool for resolving fine-grained permittivity structure and strong 

468 contrasts in important chalk reservoir rock types, which in turn may be used to estimate porosity 

469 fluctuations comparable to what can obtained from rock sample measurements (Keskinen et al., 

470 2017). The porosity models estimated using FWI indicate low-porosity (high permittivity) areas as 

471 well as high-porosity (low permittivity) zones (Keskinen et al., 2017), which most likely play an 

472 important role for determining fluid/gas flow pathways. However, the porosity model alone does 

473 not reflect all reservoir properties as the pores may, for example, be isolated and do not 

474 necessarily contribute significantly to flow through the rock. Therefore, fluid or gas flow 

475 experiments are needed for a more complete description of the flow properties of the rock, and 

476 behaviour of e.g., CO2 gas may be particularly important to study with time-lapse GPR experiments 

477 (e.g., Yuan et al., in press). Efficient and fast sampling of cross-hole GPR data is essential since the 

478 gas may dissolve or escape quickly, depending on the bulk permeability and the existence of 

479 fractures and faults (e.g., Lassen et al., 2015).

480 In this study, we have performed synthetic tests linked to resolving an injected gas bubble using 

481 different crosshole GPR transmitter-receiver geometries, which take from several hours (or more 

482 than a day) to a few hours to collect, depending on the GPR equipment available. Moreover, we 

483 have made the experiments for a realistic, highly heterogeneous chalk succession, which serves as 

484 a background model of our experiments. We consider the choice of background model essential 

485 for any such synthetic resolution test, because the permittivity (i.e. velocity) distribution of this 

486 model is highly determining for the travel paths of the wave field in the subsurface. The dense 

487 reference geometry samples the gas bubble much more densely in the horizontal than in the 

488 vertical direction (Fig. 1A). Therefore, the dense geometry leads to a slightly more elongated gas 

489 bubble than the sparser geometries tested here, as the relatively many travel paths in the 

490 horizontal or sub-horizontal direction tend to smear the anomaly. Not surprisingly, as the data 

491 coverage is reduced, lateral smearing is less visible but at the same time leads to a stronger 

492 overshooting in the anomaly estimation directly above and below the resolved gas bubble than if 
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493 the dense survey geometry is used (Figs. 3B-3E, 3J-3M, 4B-4E, 4J-4M). These models are all 

494 considered acceptable for a time-lapse experiment as the location of the gas bubble and the 

495 background models are well resolved. However, if the data coverage is reduced further (Sparse 

496 Geometry 4 and 5), the background ɛ model is poorly resolved and the gas bubble can hardly be 

497 outlined in the σ model (Figs. 3F, 4F). While the MOG geometries are capable of sampling the gas 

498 bubble both horizontally and vertically, ZOP geometry can only sample it horizontally, depending 

499 on the exact permittivity (velocity) structure. In this case, the bubble appears as a layer in the ɛr 

500 model and only indicates the depth interval of the injected gas (Fig. 3H, 3P). Following a simple 

501 ZOP strategy is fast and may thus be sufficient if only mapping of the upper and lower layer 

502 boundaries of where gas occurs is the target of the cross-hole investigation.

503 The noise test conducted with the dense reference geometry indicates that lateral smearing 

504 increases with increasing random noise and over-estimation of the dielectric permittivity directly 

505 above and below the gas bubble decreases. Also the magnitude of the resolved anomaly 

506 decreases with increasing noise (Figs. 5B-5E, 5I-5L). Thus, the noisy data is less well fitted by the 

507 FWI algorithm than the noise-free data, and the resulting subsurface models have a smoother 

508 appearance. Similar to the noise-free scenarios, reducing the data coverage in the case where 

509 noise is present reduces the lateral smearing effect and local overestimation of the dielectric 

510 permittivity again becomes stronger than for the reference geometry (Figs. 5F-5G, 5M-5N). In 

511 general, the estimation of the conductivity structure is more affected by the presence of random 

512 noise than the estimation of the permittivity structure.

513 Different effects of uncorrelated, random noise as well as correlated data errors have been 

514 investigated in previous studies (e.g., Cordua et al., 2008). Moreover, the dominant noise in GPR 

515 cross-hole data sets may not be uncorrelated. Correlated data errors caused by e.g. misplacement 

516 of the antennae or unknown borehole irregularities may have a larger effect than typical 

517 uncorrelated, random noise (Cordua et al., 2008), and such error types cannot be effectively 

518 suppressed simply by changing source-receiver geometries and the data density. However, 

519 detailed studies of the influence of noise are not the main focus points of this study. Instead, we 

520 refer the reader to other studies (e.g., Cordua et al., 2008) based on which the influence of 

521 different expected noise types can be assessed.
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522 Conductivity models resolved using the noisy datasets are not very useful regardless of the chosen 

523 survey geometry. The small gas bubble is clearly below the resolution of the obtained σ models in 

524 all cases (see Fig. 6). When the size of the gas bubble is increased significantly, the Sparse 

525 Geometry 2 results in acceptable ɛr and σ models. Reducing the data coverage further again 

526 results in a rather poor σ model (Figs. 7-10). Conductivity models seem to have significantly higher 

527 sensitivity to the noise and to the data coverage than permittivity models. These observations are 

528 consistent with the results by e.g., Oberröhrmann et al. (2013) who found that σ models have a 

529 lower resolution than ɛr models. Permittivity of a medium is mainly affected by the shape of the 

530 measured data, while the electrical conductivity is strongly influenced by the amplitude. Small 

531 changes at the amplitude of the data such as caused by noise interference can therefore have a 

532 significant effect on the FWI conductivity results. Better resolved conductivity and permittivity 

533 models can be obtained by increasing the bubble size (see Tables 3 and 4). Also, a resolved 

534 conductivity change closer to the true anomaly is obtained when using a homogeneous 

535 conductivity starting model in the FWI. However, this is at the expense of the resolved permittivity 

536 magnitude and structure.

537 Evidently, we have only considered the (simple) two-dimensional (2D) case in our synthetic tests 

538 of gas bubble simulation. Clearly, 3D effects (out of plane) will occur under real conditions, 

539 although the chalk deposits are expected to be fairly uniformly layered over relatively short 

540 intervals as studied here (e.g., Surlyk et al., 2006; Keskinen, 2017). In particular, unknown, possible 

541 small fractures may add to 3D effects under real conditions. 

542 Overall, our findings seem to be consistent with the survey design studies performed by Maurer et 

543 al. 2010, which included cross-hole seismic tomographic elements, although our study is based on 

544 GPR and linked to a specific field site where the sub-surface consists of a heterogeneous chalk-rich 

545 rock. 

546 5. Conclusions

547 In this study, we conducted a synthetic test in order to optimize the information content of a time-

548 lapse crosshole GPR data survey while minimizing the number of data to be collected and thereby 

549 reducing acquisition time. The synthetic test was based on a published field data study in chalk 

550 and therefore includes a strongly heterogeneous, realistic dielectric permittivity distribution. 
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551 Seven different survey geometries were tested with varying amounts of collected traces (from 

552 6240 to 78) and, therefore, also strongly varying acquisition times (from ~512 min to ~14 min). 

553 For the noise-free test, the amount of traces required to resolve a gas bubble could be reduced 

554 substantially (from 6270 to 375) with almost no adverse effect on the resulting permittivity 

555 structure, given that a dense background survey was collected before gas injection. As expected, 

556 introducing a high noise level affected the recovery of the permittivity magnitude of the anomaly 

557 using the dense survey geometry (from 56% to 43% of the true anomaly value), but the magnitude 

558 was not markedly deteriorated by reducing the amount of collected traces (a reduction of 1% and 

559 4% for the small and large anomaly test, respectively). The effect of noise on the resulting 

560 electrical conductivity distribution was, on the other hand, significantly stronger for the large 

561 anomaly test (a reduction of the anomaly value from 39% to 25% of the true anomaly value). 

562 Similar to previously published work, we found the conductivity distribution to be more 

563 challenging to resolve than the permittivity distribution.     

564 The results presented in this paper may serve as a catalogue of survey geometries to choose from, 

565 depending on the resolution needed and practical possibilities related to data acquisition speed 

566 and recording systems available for crosshole GPR experiments. In this context, the expected level 

567 of uncorrelated, random noise as well as possible sources of correlated data errors should be 

568 taken into account.

569 We find it particularly interesting that even rather sparse geometries, which can be recorded 

570 during little over an hour, can in fact pinpoint the position of a relatively small gas bubble with an 

571 acceptable degree of resolution, thereby, making cross-hole GPR data a feasible method to 

572 visualize tracer movement during time-lapse experiments. Special care needs to taken if a tracer is 

573 chosen that mainly influences the electrical conductivity results (e.g., salt tracer). In such a case 

574 the acquisition geometry needs to be adapted to still retrieve quantitative results.  

575
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674 List of Tables

675 Table 1: Survey geometries shown together with the estimated data acquisition times for an 

676 individual transmitter gather (MOG and ZOP strategies) as well as for half a dataset, respectively. 

677 Number of recorded traces differs from the number of traces used in the FWI.

678 Table 2: Maximum values of true and resolved ɛr and σ anomaly magnitudes estimated for each 

679 acquisition setup. See section 3.1 and Figures 3 and 4 for details. 

680 Table 3: True and resolved maximum anomalies using noisy data.

681 Table 4: True and resolved anomaly magnitudes using a big gas bubble and noisy data. See section 

682 3.3 for details.

683
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684 List of Figure captions

685 Figure 1: Data coverage for the first half of each dataset transmitter positions are indicated with 

686 red circles and receiver positions with blue dots. Table 1 shows the data acquisition parameters 

687 for each of the survey geometry. 

688 Figure 2: (A) Low, (B) intermediate, and (C) high noise added on the synthetic data (red). The noise 

689 is random Gaussian noise with a standard deviation std of, 0.51∙10-6, 1.02∙10-6, and 1.53∙10-6, 

690 respectively. The black trace represents the noise free trace.

691 Figure 3: The true subsurface ɛr model (A) and the resolved ɛr models obtained from the different 

692 acquisition geometries (B-H). True anomaly magnitude (I) is obtained by subtracting the true 

693 subsurface ɛr model from the ɛr starting model. The resolved anomaly magnitudes (J-P) are 

694 estimated by subtracting the final ɛr model from the ɛr starting model. Transmitter and receiver 

695 positions are indicted with circles and crosses, respectively.

696 Figure 4: The true subsurface σ model (A) and the resolved σ models obtained from the different 

697 acquisition geometries (B-H). True anomaly magnitude (I) is obtained by subtracting the true 

698 subsurface σ model from the σ starting model. The resolved anomaly magnitudes (J-P) are 

699 estimated by subtracting the final σ model from the σ starting model.

700 Figure 5: Panel A shows the true subsurface ɛr distribution and H shows the true anomaly 

701 magnitude. Final ɛr models obtained from noise-free data (B) and noisy data (C-G) are similar to 

702 one another. The gas bubble becomes slightly more horizontally elongated as the noise level 

703 increases (B-E). Also, the magnitude of the resolved bubble becomes weaker with increasing noise 

704 (I-L). Permittivity models obtained from highly noisy data are not greatly affected by the selected 

705 acquisition geometry (E-G). In all cases with a high noise level, the magnitude of the resolved 

706 anomaly is approximately 50% of the true magnitude.

707 Figure 6: Panels A and H show the true subsurface σ distribution and the true anomaly magnitude, 

708 respectively. The noise-free data results in a clearly better σ model than the noisy datasets (B-G). 

709 The influence of the added noise is also seen in the resolved magnitudes (I-N). 

710 Figure 7: ɛr models obtained from highly noisy data (B-D) using Dense and Sparse Geometry 2 and 

711 5. Corresponding resolved anomaly magnitudes are shown in F-H.
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712 Figure 8: σ models obtained from highly noisy data (B-D) using Dense and Sparse Geometry 2 and 

713 5. Corresponding resolved anomaly magnitudes are shown in F-H. 




